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S U M M A R Y  
For many years one of the major criticisms of mathematiqs was that it provided no methods for solving nonlinear 
problems. With the development of the high speed computer and related numerical methods, this criticism is now being 
answered. In this paper we present a numerical method for solving a fundamental nonlinear problem in fluid dynamics. 
That the numbers presented actually do represent a numerical solution can be verified easily by direct substitution 
into the difference equations. Why the methodconverges is a difficult matter and is at present under study. 

1. Introduction 

In this paper we will apply a new digital computer technique to the study of two dimensional, 
steady, viscous, incompressible flow through a channel with a step. The method is vastly more 
economical and accurate than time dependent, step-ahead techniques. The power of the method 
is contained in the structure of the difference equations, which, for all Reynolds numbers N, 
yield diagonally dominant systems of linear algebraic equations [1]-[3]. 

2. The General Problem 

The initial problem to be considered will be formulated analytically as follows. Consider the 
channel with a step which is shown in Figure 2.1. Let S be the polygon ABCDEFGH and let R 
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be the interior of S. On R the equations of motion to be satisfied are the two dimensional, 
Navier-Stokes equations, that is, 

A~ = -co (2.1) 

A~o+~ Q0 coco ~0 e y  ~y = 0 ,  (2.2) 

where ~ is the stream function, 09 is the vorticity, and ~ is the Reynolds number. On S the 
boundary conditions to be satisfied are 

* Funds for the computations described in this paper were made available by the Research Committee of the Graduate 
School of the University of Wisconsin. 
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4,=1, ~ ~y  = 0, on H G ;  (2.3) 

and 

4' =0,  ~y  = 0, on AB, CD, EF ; (2.4) 

4'=0, ~x = 0, on BC, D E ;  (2.5) 

4' = 3y 2 - 2y a, 0) = 1 2 y -  6, on AH .; (2.6) 

Ox + + ay ] 0, on F G .  (2.7) 

Conditions (2.6) are those of Poiseuille flow [4], while conditions (2.7), formulated by R. E. 
Meyer and communicated privately, make the flo~v horizontal and the pressure constant on 
FG. 

3. The Numerical  Method  

In this section we will describe in complete generality a numerical method for approximating 
solutions of boundary value problem (2.1)-(2.7). In the discussion, a reference appearing with 
a difference equation indicates where a derivation of the equation can be found. Particular 
examples and actual computations will be described in the next section. 

For n a fixed positive integer, determine grid size h from h = 1/n. Next, on and within polygon 
ABCDEFGH, construct and number in the usual way [1] the set of interior grid points Rh 
and the set of boundary grid points Sh. With regard to Rh and Sh, it will be assumed, with very 
little loss of generality, that h can be selected so that e 1, 6~2, fl, ~ and 5 are integral multiples of h. 

We will aim at constructing on Rh + Sh a pair of finite sequences of discrete functions 

O(o), ~Om, 0(2) . . . . .  o(k), o(k+ 1) (3.1) 

(D(0), (.D(1), 0)(2), . . . , 0)(k), 0)(k+ 1) (3.2) 

with the properties that, for some given tolerance e, 

10(k)--4'(k+l)l < ~ (3.3) 

10)(k) _ 0)(k + 1) I < e (3.4) 

at each point o f R  h + S h. All the functions in sequences (3.1) and (3.2) will be called outer iterates 
and the particular functions 4'(k) and 0)(k) will be taken to be approximations on Rh+ Sn to 
4' (x, y) and co (x, y), respectively. 

For the above purpose, we begin by defining 0(0) and 0)(0) as follows. At each grid point in 
HG, set 4'(o) = 1 ; at each grid point in ABCDEF set 4'(0) = 0; at each grid point in AH determine 
4'(0) from (2.6); and on the remaining grid points of R h "q-S h determine 4'(0) by linear interpola- 
tion along the vertical grid lines. At each grid point in AH determine 0)(0) from (2.6) and on the 
remaining grid points of R h + Sh set 0)(0) = O. 

The second element of sequence (3.1) is now determined as follows. At each grid point in 
HG set 4'(1) = 1 ; at each grid point in ABCDEF set ~k (1) = 0; ~md at each grid point in AH, de- 
termine 4'(1)from (2.6). Next, at each grid point (x, y) in Rh, w r i t e  down the difference analogue 
[13: 

- 4 4'(1) (x, y) + 4'(1)( x + h, y) + 4'(1) (x, y + h) + O(i)(x - h, y) + ~k(1) (x, y - h) = - h: 09 (~ (x, y) 
(3..5) 

of differential equation (2.1), while at each point (x, y) of Sh which is interior to FG, write down 
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the difference analogue 

O(1)(x, y) = 0(1)(x- h, y) (3.6) 

of the first condition in (2.7). One then solves the linear algebraic system generated by (3.5) and 
(3.6) by the generalized Newton's method [1] with over-relaxation factor r o and denotes the 
solution by ~(1) which is of course defined only o n  R h and on those points of Sh which are in- 
terior to FG. The function ~b (1) is then defined on this point set by the weighted average 

~(1)= p~k(o)+ (1 _ p) ~0), 0~<p~<l, (3.7) 

thus completing the definition of ~9 (1) on all of Rh+S h. 
The second element of sequence (3.2) is now determined as follows. At each grid point in 

AH, determine co (~) from (2.6). At each grid point (x, y) which is interior to HG approximate 
0) (1) by [3] 

2 2 
co(1)(x,y) - h2 h2 ~~ ; (3.8) 

at each grid point (x, y) which is interior to AB, CD and EF approximate 09 (1) by 

~O)(x,y ) = 2 O(l)(x,y+h ) . (3.9) - ~ 2  

at each grid point (x, y) interior to BC approximate 0)(1) by 

2 
~(1)  = _ h ~ O ( , ) ( x _ h ,  y) ; (3.10) 

at each grid point (x, y) interior to DE approximate 0)(t) by 

c5(i)(x, y) = 2 (1 - ~ )(x+h,y). (3.11) 

At the stagnation points B and E, merely set 

c0 (z)= 0,  (3.12) 

while at F and G, which will never enter into the computations, we do not define 0)(1) at all. 
At the points C and D, assume that (3.5) is valid with 0)(0) replaced by 0)(1), so that at C we 

approximate 0)(1) by 

1 
~(1) = _ h ~ [~(1)(x  ' y + h) + ~ ( 1 ) ( x -  h, y)]  (3.13) 

while at D we approximate 0)(1) by 

1 [O(1)(x+h,y)+OO)(x,y+h)] (3.14) 

Next, at each point (x, y) of Rh, proceed as follows [2]. Determine the values 

= 0 (1)(x + h, y) - 0 (1) (x - h, y) (3.15) 

= O(l)(x ' yq2 h) - ~(1)(x, y -  h) (3.16) 

and write down, as is appropriate, the following difference analogues of differential equation 
(2.2): 

2 J{'-2 ~-) 0)(1)(x,y)+0)(1)(x+h,y) (1 + 0)m(x,y+h) 

+(l+~2-~'-)co~ (9f'>~O, J.(" ~> O) , (3.1'}a) 
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4 ~'~t~N 
2 

+co(1)(x-h,y)+co(1)(x,y-h) = 0,  (~4~ ~>0, X < 0 ) ,  

( - 4  ~ )  ~ o) (1) (x, y) + co(l)(x q- h, y) + co(1)(x, y + h) 

+ (1 + ~---)co(t)(x-h,y) + (l --2/f~--)co(1)(x,y-h)=O, 

---+~---)co(l'(x,y)+(1--"U--~-)co(1)(x+h,y)+(l+~-)co(l'(x,y+h) 

(3.17b) 

( ~ < 0 ,  X~>0) ,  

(3.17c) 

+co'l)(x-h,y) + ( i  -~-)co'a)(x,y-h)=O, ( ~ < 0 ,  S < 0 ) .  (3.17d) 

In applying (3.17a)-(3.17d), the values of co at boundary grid points not in GF  are to be 
determined from (3.8)-(3.14). Finally, at each grid point (x, y) interior to FG, we write down the 
difference analogue 

co(1)(x,y)-co(1)(x-h,y)+ yl[Otl)(x,y+h)-OtX)(x,y,h!] 
h 2h x 

f x co(1)(x, y ) +  0(1)(x' y+h); -20m(x'7- ~ y) + O(I)(x'y-h)-]:A = 0 (3.18) 

of the second condition in (2.7). 
One then solves the linear algebraic system generated by (3.17a)-(3.17d) and (3.18) by the 

generalized Newton's method with over-relaxation factor r~. This solution is denoted by N (1). 
To determine co(l) at those points of Rh + Sh at which only ~(1) has been defined, we use the 

averaging formula 

o9(1)= pco(~ ( 1 - # ) ~ ~  0~<p~<l, (3.19) 

thus completing the definition of co(l) on all of Rh+S h. 
The numerical method then proceeds by generating 0(2) from 09(1) just as 0(1) was generated 

from co(o) and by generating co (e) from O(z)just as co(l) was generated from ~b (1). The indicated 
iteration is continued until, for some k, (3.3) and (3.4) are valid. Substitution of O(k) and co (g) 
into the difference approximations of (2.1) and (2.2) to assure that these are the desired solu- 
tions terminates the method. 

4. Examples 

We shall now try to organize in a Comprehensive way the large number of examples run on the 
CDC 3600 at the University of Wisconsin. Convergent results were obtained readily for e = 
10 -4, h =~o, t =  1, b = 1, 7 =�89 r~ = 1.8, r,o= 1.0 as indicated in Table 4.1. All stream curves are 
plotted in Figures 4.1-4.6, while typical equivorticity curves are shown in Figures 4.74.9. 
A variety of checks were run to determine the validity of the results shown in Figures 4.1-4.9. 
For example, for ~ =  100 the case cr 1 =4,  ~a=20, p=0.04,  #=0.7  was run to verify that the 
channel length to the right had no effect on the size of the vortex; for ~ = 200 a more accurate 
solution was obtained with e = 10- 6 to verify the existence of the vortex on the left ; and for 

= 200 Poiseuille conditions were assumed on FG in place of (2.7), the result being essentially 
the same as that obtained with (2.7). Other selected results have been organized in Table 4.2. 

From Table 4.1 it can be seen that as the right vortex was increasing in size, the amount of 
computing time required f o r ' ~ >  1000 would have been exorbitant. Thus, for economy pur- 
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TABLE 4.1 

Approximate 
number of outer 
iterates 

Approximate 
running time 
(min.) 

10 4 4 0.04 0.7 30 
50 4 4 0.04 0.7 60 

100 4 4 0.04 0.7 100 
200 4 4 0.04 0.7 150 
500 4 10 0.03 0.85 470 

1000 4 10 0.03 0.9 650 
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TABLE 4.2 

~1 g2 h p # r o % Convergent 
o r  

Divergent 

10 4 4 �88 0 0 1.8 1.0 
10 4 4 �88 0.1 0.5 1.8 1.0 
l0 s 4 4 �88 0.1 0.5 1.8 1.0 
10 4 4 ~ 0.1 0.1 1.8 1.0 
10 4 4 ~ 0.7 0.1 1.8 1.0 

10 4 4 ~ 0.7 0.7 1.8 1.0 
105 4 4 ~ 0.1 0.7 1.8 1.0 
105 4 4 ~ 0.1 0.3 1.8 1.0 
l0 s 4 4 ~ 0.1 0.3 1.8 0.7 
105 4 4 ~ 0.1 0.7 1.8 0.7 
10 4 4 ~-~ 0.1 0.7 1.8 1.6 
10 4 4 --1 0.1 0.4 1.9 1.0 lO 

10 4 4 --1 0.2 0.7 1.8 1.0 lO 

100 4 4 ~ 0.1 0.1 1.8 1.3 
100 4 4 1 0.1 0.7 1.8 1.0 10 

500 4 4 ~o 0.07 0.7 1.8 1.0 
500 4 4 --1 0.03 0.45 1.8 1.0 lO 

500 4 4 ~ 0.04 0.6 1.8 1.0 l o  

103 4 4 1-- 0.02 0.5 1.8 1.0 lO 

103 4 4 ~o 0.1 0.5 1.8 1.0 
103 4 4 ~o 0.5 0.5 1.8 1.0 
103 4 4 --1 0.5 0.9 1.8 1.0 lo 
103 4 4 ~ 0.1 0.9 1.8 1.0 l o  

104 4 4 • 0.05 0.8 1.8 1.0 lo 
104 4 8 --1 0.05 0.6 1.8 1.0 lO 

Divergent 
Convergent 
Divergent 
Divergent 
Divergent 

Divergent 
Divergent 
Divergent 
Divergent 
Divergent 
Divergent 
Divergent 
Divergent 
Divergent 
Convergent 
Divergent 
Divergent 
Divergent 
Divergent 
Divergent 
Divergent 
Divergent 
Convergent 
Divergent 
Divergent 

Journal of Engineerin# Math., Vol. 3 (1969) 21-28 



Steady, viscous, incompressible flow 27 

poses and in order to study better the growth of the left vortex, a modified problem was studied 
as follows. 

5. Flow up a Step 

The channel shown in Figure 2.1 was modified by eliminating the down-stream step, as shown 
in Figure 5.0. The analytical problem formulated in Section 2 was modified by asking that (2.7) 
now be satisfied on ED in Figure 5.0. The numerical approach to this new problem was essenti- 
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ally the same as that described in Section 3. Convergent results were obtained readily tbr 
e = 10-4, ~ = 5, r 0-- 1.8 and ro~ = 1.0. In the case N = 2000 with h = ~o, convergence was achieved 
with p=0.03, #=0.3 in 100 outer iterations in only 2 minutes 31 seconds of running time. 
In the case N =  5000 with h=~o, convergence was achieved with p =0.03, #=0.3 in 100 itera- 
tions in only 2 minutes 26 seconds of running time. In the case N =  10,000 with h =~o, conver- 
gence was achieved with p--0.05, #=0.7  in 230 iterations in 5 minutes of running time. The 
streamlines and equivorticity curves for these cases are shown in Figures 5.1-5.6. 
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Finally it should be noted that the computations of this paper are being documented by the 
inclusion of a Fortran program in a report [-5]. The availability of this program is essential if 
other workers are to be able to duplicate our computations in order to ,r or to refute our 
results. 
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